High-throughput analysis of drug binding interactions for the human cardiac channel, Kv1.5.

نویسندگان

  • Jerzy Karczewski
  • Laszlo Kiss
  • Stefanie A Kane
  • Kenneth S Koblan
  • Robert J Lynch
  • Robert H Spencer
چکیده

The voltage-gated potassium channel Kv1.5 is one of the key regulators of membrane potential repolarization in human atrial myocytes and is considered a potential drug target to treat atrial fibrillation. In this study we sought to determine molecular mechanism of action of DPO-1, a diphenylphosphine oxide derivative recently shown to terminate experimental atrial arrhythmia without affecting ventricular refractory period. In addition, we provided similar analysis for additional two small molecule blockers, representing different structural classes: cyclohexanones (PAC) and nor-triterpenoids (correolide). To rapidly identify the residues within the Kv1.5 channel critical for blocking activity of these molecules, two functional high-throughput ion channel assays were employed together with site-directed mutagenesis. Our study revealed that the residues critical for blocking activity of for DPO-1 include T480, localized at the outer mouth of the pore, and two residues along S6 helix: V505 and I508. The overlapping site was identified for PAC and included residues T480 and V505. In contrast to DPO-1, the I508A mutation resulted in only a modest reduction in the block of Kv1.5 by PAC (9-fold). Correolide, the largest molecule examined, made widespread interactions along the entire length of the pore (from T480 to V516). In summary, we have identified multiple residues involved in forming high affinity binding site for Kv1.5 blockers. Similar approaches of high-throughput ion channel technologies, combined with site-directed mutagenesis, may allow for parallel, rapid and accurate analysis of ion channel interactions with multiple compounds and could facilitate the design of more potent and selective ion channel blockers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antiarrhythmic drug-induced internalization of the atrial-specific k+ channel kv1.5.

Conventional antiarrhythmic drugs target the ion permeability of channels, but increasing evidence suggests that functional ion channel density can also be modified pharmacologically. Kv1.5 mediates the ultrarapid potassium current (I(Kur)) that controls atrial action potential duration. Given the atrial-specific expression of Kv1.5 and its alterations in human atrial fibrillation, significant ...

متن کامل

SAP97 interacts with Kv1.5 in heterologous expression systems.

PDZ domain-containing proteins such as SAP97 and ZO-1 have been implicated in the targeting and clustering of ion channels. We have explored the interactions of these polypeptides with a cardiac voltage-gated potassium channel. Immunocytochemistry in cardiac myocytes revealed colocalization of SAP97 and Kv1.5, both at the intercalated disks and the lateral membranes. Transient transfection expe...

متن کامل

Interactions of the nonsedating antihistamine loratadine with a Kv1.5-type potassium channel cloned from human heart.

The use of nonsedating antihistamines may, on rare occasions, be associated with cardiac arrhythmias. This could be due to blockade of voltage-dependent K+ channels in the heart, leading to a prolongation in repolarization in the human myocardium. For this reason, we examined the effects of the nonsedating antihistamine loratadine on a rapidly activating delayed-rectifier K+ channel (Kv1.5) clo...

متن کامل

Design of Novel Drugs (P3TZ, H2P3TZ, M2P3TZ, H4P3TZ and M4P3TZ) Based on Zonisamide for Autism Treatment by Binding to Potassium Voltage-gated Channel Subfamily D Member 2 (Kv4.2)

The present research article relates to the discovery of the novel drugs based on Zonisamide to treatment of autism disease. In first step, the electronic properties, reactivity and stability of the said compound are discussed. To attain these properties, the said molecular structure is optimized using B3LYP/6-311++G(d,p) level of theory at room temperature. The frontier molecular orbitals (FMO...

متن کامل

Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach

Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical pharmacology

دوره 77 2  شماره 

صفحات  -

تاریخ انتشار 2009